Algebra II – 1st Semester Review

Review Chapter 2

Find the domain and range of each relation, and determine whether it is a function.

1.
$$\{(2, 1), (-4, 5), (1, 7), (2, -3), (-1, 2)\}$$
 2. $\{(1, -1), (2, -2), (3, -3), (4, -4), (5, -5)\}$

$$\{(1,-1), (2,-2), (3,-3), (4,-4), (5,-5)\}$$

Suppose f(x) = 3x - 4 and g(x) = |x| + 3. Find each value.

$$f(2)-g(5)$$

4.
$$f\left(\frac{1}{3}\right) + g(-2)$$

b)
$$21, 15, 9, 3, \dots$$

9 For the situation, find a linear model and use it to make a prediction.

words will be typed in 8 minutes? There were 64 words typed in 3 minutes. There were 89 words typed in 6 minutes. How many

Find the slope of each line.

7.
$$3x - 5y = 15$$

9. through (6, 1) and perpendicular to
$$y = \frac{3}{2}x + \frac{1}{4}$$

10.
$$y = -7$$

11.
$$x = 2$$

Graph each problem.

12.
$$y = \frac{1}{2}x + 1$$

13.
$$y = |x+2| - 3$$

14.
$$y = -|x| + 4$$

15.
$$y = \begin{cases} 2x + 3 & x \le -2 \\ -x, & -2 < x < 3 \\ -4, & x \ge 3 \end{cases}$$

Write in standard form the equation of the line with the given slope through the given point.

16. slope = 6;
$$\left(\frac{1}{2}, 2\right)$$

17.
$$slope = -2; (0, 0)$$

Write in slope-intercept form the equation of the line through each pair of points.

18.
$$(5, -8)$$
 and $(5, 3)$

19.
$$(1, 5)$$
 and $(-3, 3)$

20.
$$(-4, 1)$$
 and $(-2, -2)$

The table below displays the enrollment at Westside High during the years 1996-2001. Let x equal the number of years since 1996.

2001	2000	1999	1998	1997	1996	Year
1801	1745	1723	1674	1635	1582	Enrollment

- a. Use your calculator to find the equation of best fit for the data.
- b. Estimate the enrollment in 2006.

translation. Describe each translation of y = |x| as vertical, horizontal, or combined. Then graph each

22.
$$y = |x+3| - 2$$

23.
$$y = |x| + 2$$

24.
$$y = |x - 4|$$

3.
$$y = |x| + 2$$

24.
$$y = |x-4|$$

25. $2x + 3y \ge -6$

Write an equation for each function.

Algebra II – 1st Semester - Review Chapter 3

Solve each system.

1.
$$\begin{cases} y = 2x + 8 \\ y = 3x - 1 \end{cases}$$

2.
$$\begin{cases} 2x - y = 2 \\ 2x - 2y = 4 \end{cases}$$

$$3. \quad \begin{cases} -x+y=2\\ 2x+y=-1 \end{cases}$$

Graph each system.

4.
$$\begin{cases} y > x - 5 \\ 3x + y \le -2 \end{cases}$$

$$\begin{cases} y \le x + 2 \\ y > |x - 3| + 1 \end{cases}$$

Ņ

Solve each system of equations.

6.
$$\begin{cases} 5x + 4y - z = 1 \\ 2x - 2y + z = 1 \\ -x - y + z = 2 \end{cases}$$

Solve the problem using a system of equations.

Jennifer has ten fewer quarters than dimes and five fewer nickels than quarters. The total value of the coins is \$4.75. How many quarters, nickels, and dimes does she have?

maximize or minimize the objective function. Graph each system of constraints. Name all vertices. Then find the values of x and y that

$$3x + 2y \le 6$$
8. $\{2x + 3y \le 6\}$
 $\{x \ge 0, y \ge 0\}$

Maximum for
$$P = 4x + y$$

9.
$$\begin{cases} x+y \le 5 \\ 4x+y \le 8 \\ x \ge 0, y \ge 0 \end{cases}$$

$$C = x + 3y$$

- 10. You are going to make and sell bread. A loaf of Irish soda bread is made with 2 c flour and $\frac{1}{4}$ c 3 c sugar. each loaf of Irish soda bread and a profit of \$4 on each Kugelhopf cake. You have 16 c flour and sugar. Kugelhopf cake is made with 4 c flour and 1 c sugar. You will make a profit of \$1.50 on
- How many of each kind of bread should you make to maximize the profit?
- b. What is the maximum profit?

Algebra II – 1st Semester - Review Chapter 5

Write the equation of the parabola in standard form. Find the coordinates of points corresponding to P and Q.

Sketch a graph of the parabola with the given vertex through the given point.

3. vertex
$$(-3, -2)$$
; point $(1, 2)$

Identify the axis of symmetry and the coordinates of the vertex

4.
$$y = x^2 + 5$$

5.
$$y=x^2-4x-3$$

Simplify each expression.

6.
$$(3+i)-(7+6i)$$

$$(-4-9i)+(5-7i)$$

10.
$$(\sqrt{-9}-2)(\sqrt{-4}+1)$$

7.
$$(3-4i)(5+2i)$$

9.
$$3\sqrt{-25}+4$$

11.
$$(5i+4)-(4i-3)$$

Find the conjugate of each number.

12.
$$-2-3i$$

13.
$$5-3i$$

Solve each quadratic equation.

14.
$$x^2 - 16 = 0$$

15.
$$x^2 + 3x - 10 = 0$$

16.
$$3x^2 + 48 = 0$$

Solve by completing the square. Show your work.

17.
$$-x^2 - 8x + 5 = 0$$

18.
$$9x^2 - 18x - 1 = 0$$

Write each function in vertex form. Sketch the graph of the function and label its vertex.

19.
$$y = x^2 + 4x - 7$$

20.
$$y = 3x^2 + 18x$$

Evaluate the discriminant of each equation. How many real and imaginary solutions does each

21.
$$x^2 + 5x + 6 = 0$$

$$22. \quad -2x^2 - 5x + 4 = 0$$

23. A ball is thrown upward from ground level. Its height h, in feet, above the ground after t seconds is $h = 48t - 16t^2$. Find the maximum height of the ball.

Algebra II – 1st Semester - Review Chapter 6

Write each polynomial in standard form. Then classify it by degree and number of terms.

1.
$$4x^4 + 6x^3 - 2 - x^4$$

2.
$$9x^2 - 2x + 3x^2$$

3.
$$4x(x-5)(x+6)$$

Estimated Number of Deaths in the United States

Deaths (millions)	Year
1.71	1960
1.92	1970
1.99	1980
2.15	1990
2.40	2000
2.42	2003

Source: www.infoplease.com

- Find a cubic function to model the data. (Let x = years after 1960.)
- **b.** Estimate the deaths for the year 2006.

Solve each equation by graphing. Where necessary, round to the nearest hundredth.

5.
$$x^4 + 2x^2 - 1 = 0$$

6.
$$-x^3 - 3x - 2 = 0$$

Write a polynomial function with rational coefficients in standard form with the given zeros.

For each function, determine the zeros and their multiplicity. Sketch the graph.

9.
$$y = (x-1)^2(2x-3)^3$$

10.
$$y = 4x^2(x+2)^3(x+1)$$

Solve each equation.

11.
$$(x-1)(x^2+5x+6)=0$$

12.
$$x^3 - 10x^2 + 16x = 0$$

Divide using long division

13. $(2x^3 + 13x^2 + 17x + 10) \div (x + 5)$

14.
$$(3x^3 + 12x^2 + 12x + 48) \div (3x + 12)$$

Divide using synthetic division.

15.
$$(2x^3 - 4x + 3) \div (x - 1)$$

16.
$$(x^3 + 5x^2 - x + 1) \div (x + 2)$$

Use the Rational Root Theorem to list all possible rational roots for each equation. Then find any

17.
$$x^3 + 6x^2 + x + 6 = 0$$

18.
$$x^4 - 18x^2 + 32 = 0$$

Use synthetic division and the Remainder Theorem to find P(-5) if $P(x) = -x^3 - 4x^2 + x - 4x^2$

Algebra II – 1st Semester - Review Chapter 7.1-7.4

Simplify each radical expression.

1.
$$\sqrt[3]{-27x^6}$$

2.
$$\sqrt{a^4b^6}$$

3.
$$\sqrt[5]{-32s^{15}t^{10}}$$

4.
$$\sqrt[4]{256y^8}$$

Simplify each expression. Rationalize all denominators. Assume that all variables are positive.

5.
$$(2-\sqrt{5})(2+\sqrt{5})$$

$$6. \quad \frac{\sqrt{48a^5b}}{\sqrt{12ab}}$$

7.
$$\sqrt{5}(2\sqrt{45}-\sqrt{5})$$

8.
$$\frac{7}{1-\sqrt{3}}$$

9.
$$5\sqrt{32}-7\sqrt{8}$$

10.
$$2\sqrt{15xy^3} \cdot 3\sqrt{30x^3y^2}$$

Simplify each expression. Assume that all variables are positive

11.
$$2y^{\frac{1}{2}} \cdot y$$
14. $\left(\frac{1}{16}\right)^{\frac{1}{4}}$

12.
$$(8^2)^{\frac{1}{3}}$$

18.
$$\left(3a^{\frac{1}{2}}b^{\frac{1}{3}}\right)$$

15.
$$\left(\frac{27}{8}\right)^{\frac{2}{3}}$$

$$17. \left(3x^{\frac{1}{2}}\right)\left(4x^{\frac{2}{3}}\right)$$

18.
$$\left(3a^{\frac{1}{2}b^{\frac{1}{3}}}\right)^2$$
21. $81^{-\frac{1}{2}}$

19.
$$\left(y^{\frac{2}{3}}\right)^{-9}$$

20.
$$\left(a^{\frac{2}{3}}b^{-\frac{1}{2}}\right)^{-6}$$

21.
$$81^{-\frac{1}{2}}$$

22.
$$\left(2x^{\frac{2}{5}}\right)\left(6x^{\frac{1}{4}}\right)$$

23.
$$(9x^4y^{-2})^{\frac{1}{2}}$$

Write each expression in radical form.

24.
$$x^{\frac{1}{3}}$$

25.
$$a^{1.5}$$

26.
$$b^{\frac{1}{5}}$$

Write each expression in exponential form.

27.
$$\sqrt[3]{m}$$

28.
$$\sqrt{5y}$$

29.
$$\sqrt[3]{2y^2}$$

30.
$$(\sqrt[4]{b})^3$$

31.
$$\sqrt{(6a)^4}$$

33.
$$\sqrt[5]{n^4}$$