Practice 8-4

More Multiplication Properties of Exponents

Simplify each expression.

1. $(4a^5)^3$

 $(x^{5})^{2}$

 $x^4 \cdot (x^4)^3$ $(a^4)^{-5} \cdot a^{13}$

œ

 $(x^5y^3)^3(xy^5)^2$

ဖှ

9

 $(4x^4)^3(2xy^3)^2$

μ

 $(m^{-3}n^4)^{-4}$

Ŋ

 $2^5 \cdot (2^4)^2$

ö

Ξ $(d^2)^{-4}$

è $(12b^{-2})^2$

22. $(a^3)^6$ $(y^6)^{-3} \cdot y^{21}$

9

<u>`</u>5 $(5a^3b^5)^4$

28. $a^{-4} \cdot (a^4b^3)^2$

29. $(x^4y)^3$

26. $(b^{-3})^6$

27. $(y^6)^3$

24. $(4^{-1}s^3)^{-2}$

21. $(m^5)^{-3}(m^4n^5)^4$

18. $(x^{-4})^5(x^3y^2)^5$

30. $d^3 \cdot (d^2)^5$

23.

 $b^{-9} \cdot (b^2)^4$

20.

 $n^6 \cdot (n^{-2})^5$

17.

 $(m^{-5})^{-3}$

7

 $(a^3b^4)^{-2}(a^{-3}b^{-5})^{-4}$

15. $(x^2y)^4$

12. $x^3 \cdot (x^3)^5$

 $(3f^4g^{-3})^3(f^2g^{-2})^{-1}$

Simplify. Write each answer in scientific notation.

4 $(9 \times 10^7)^2$ 31. $10^{-9} \cdot (2 \times 10^2)^2$

37

 $(5 \times 10^{5})^{4}$

6 $(3 \times 10^5)^4$

₽. $10^5 \cdot (8 \times 10^7)^3$

<u></u>6

formula $E = \frac{1}{2}mv$

44. $(10^2)^3(6 \times 10^{-3})^3$

32. 35. $10^{-3} \cdot (2 \times 10^3)^5$ $(3 \times 10^{-6})^3$

36.

 $(7 \times 10^5)^3$

<u>ω</u>

 $10^4 \cdot (4 \times 10^6)^3$

₩ 8

41. $(4 \times 10^8)^{-3}$

 $(2 \times 10^{-3})^3$

39. $(5 \times 10^2)^{-3}$

42. $(1 \times 10^{-5})^{-5}$

45. $10^7 \cdot (2 \times 10^2)^4$

47. moon is found by using the formula $S = 12.56r^2$. What is the surface area of the moon if the radius is 1.08×10^3 mi? The moon is shaped somewhat like a sphere. The surface area of the

object. The mass of a car is 1.59×10^3 kg. The car is traveling at

 \times 10¹ m/s. What is the kinetic energy of the car?

The kinetic energy, in joules, of a moving object is found by using the

', where m is the mass and ν is the speed of the

© Pearson Education, Inc., publishing as Pearson Prentice Hall.

- 48 the volume the radius of the pile is 1.2×10^2 ft. Use the formula $V = \frac{1}{3}\pi r^2 h$ to find a pile. The pile is shaped like a cone. The height of the pile is 25 ft, and Because of a record corn harvest, excess corn is stored on the ground in
- 49. Suppose the distance in feet that an object travels in t seconds is after 1.5×10^3 seconds? given by the formula $d = 64t^2$. How far would the object travel

