

Extra Practice: Skills and Word Problems

Lesson 10-1 Without graphing, describe how each graph differs from the graph of

1.
$$y = 3x^2$$

2.
$$y = -4x^2$$

3.
$$y = -0.5x^2$$

4.
$$y = 0.2x^2$$

5.
$$y = x^2 - 4$$

6.
$$y = x^2 + 1$$

7.
$$y = 2x^2 + 5$$

8.
$$y = -0.3x^2$$

Lesson 10-2 Identify the axis of symmetry and the vertex of each function.

9.
$$y = 3x^2$$

10.
$$y = -2x^2 + 1$$

11.
$$y = 0.5x^2 - 3$$

14. $y = \frac{3}{4}x^2$

12.
$$y = -x^2 + 2x + 1$$

15. $y = 2x^2 - 9$

16.
$$y = -5x^2 + x +$$

13. $y = 3x^2 + 6x$

17.
$$y = x^2 - 8x$$

Graph each quadratic inequality.

18.
$$y > x^2 - 4$$

19.
$$y < 2x^2 + x$$

20.
$$y \le x^2 + x - 2$$

Lessons 10-3 and 10-4 Solve each equation. If the equation has no solution, write no solution.

21.
$$x^2 = 36$$

22.
$$x^2 + x - 2 = 0$$

23.
$$c^2 - 100 = 0$$

24.
$$9d^2 = 25$$

27. $2x^2 - 54 = 284$

25.
$$(x-4)^2=100$$

26.
$$3x^2 = 27$$

28.
$$7n^2 = 63$$

29.
$$h^2 + 4 = 0$$

Lessons 10-5 and 10-6 Solve each equation. If the equation has no solution, write no solution.

$$30. x^2 + 6x - 2 = 0$$

31.
$$x^2 - 5x = 7$$

$$32. x^2 - 10x + 3 = 0$$

Ö

$$33. 2x^2 - 4x + 1 = 0$$

$$34. \ 3x^2 + x + 5 = 0$$

$$35. \frac{1}{2}x^2 - 3x - 8 = 0$$

$$36. x^2 + 8x + 4 = 0$$

$$37. x^2 - 2x - 6 = 0$$

$$38. -3x^2 + x - 7 = 0$$

$$39. x^2 + 5x + 6 = 0$$

40.
$$d^2 - 144 = 0$$

41.
$$c^2 + 6 = 2 - 4c$$

• Le

3

• Le

67.

<u>8</u>

42.
$$x^2 + 4x = 2x^2 - x + 6$$

43.
$$3x^2 + 2x - 12 = x^2$$

44.
$$r^2 + 4r + 1 = r$$

45. $d^2 + 2d + 10 = 2d + 100$

46.
$$3c^2 + c - 10 = c^2 - 5$$

47.
$$t^2 - 3t - 10 = 0$$

48. Agriculture You are planting a rectangular garden. It is 5 feet longer than 3 times its width. The area of the garden is 250 ft². Find the dimensions of

Lesson 10-7 Find the number of solutions of each equation.

the garden.

49.
$$3x^2 + 4x - 7 = 0$$

50.
$$5x^2 - 4x = -6$$

$$51. x^2 - 20x + 101 = 1$$

52.
$$2x^2 - 8x + 9 = 4$$

$$53. 4x^2 - 5x + 6 = 0$$

$$54, x^2 - 2x + 7 = 0$$

Lesson 10-8 Graph each set of data. Which model is most appropriate for each set?

6

Lesson 10-1

- 58. Water from melting snow drips from a roof at a height of 40 ft. The function t seconds after it falls. Graph the function. $h = -16t^2 + 40$ gives the approximate height h in feet of a drop of water
- Lesson 10-2 The formula $h = -16t^2 + \nu t + c$ describes the height of an object thrown into the air, where h is the height, t is the time in seconds, v is the initial velocity, and c is the initial height. Use the formula to answer each question.
- 59. A football is thrown with an upward velocity of 15 ft/s from an initial height of 5 feet. How long will it take for the football to reach its maximum height?
- 60. A ball is thrown from the top of a 50-ft building with an upward velocity of it be? 24 ft/s. When will it reach its maximum height? How far above the ground will
- Lesson 10-3 Model each problem with a quadratic equation. Then solve. If necessary, round to the nearest tenth.
- **61.** Find the radius of a circular lid with an area of 12 in.²
- 62. Find the side length of a square sandbox with an area of 150 $\rm ft^2$.
- 63. Find the diameter of a circular pond with an area of $300~\text{m}^2$
- Lesson 10-4 Answer each question by factoring a quadratic equation.
- 64. The length of an open-top box is 4 cm longer than its width. The box was cut from each corner. The height of the box is 6 cm. Find the dimensions of made from a 480-cm² rectangular sheet of material with 6 cm-by-6 cm squares
- 65. Suppose you throw a rugby ball into the air with an initial upward velocity of when the ball will hit the ground. ball's height h in feet at time t seconds. Solve the equation for h = 0 to find 29 ft/s and an initial height of 6 ft. The formula $h = -16t^2 + 29t + 6$ gives the
- Lesson 10-5 Solve by completing the square.
- 66. A rectangular patio has a length of x + 6 m, a width of x + 8 m, and a total area of 400 m². Find the dimensions to the nearest tenth.

Lessons 10-6 and 10-7

- 67. A tennis ball is hit with a vertical velocity of 40 ft/s from an initial height of 7 ft. In how many seconds will the ball hit the ground?
- 68. A ball is thrown from an initial height of 6 feet at a rate of 42 ft/s to someone if the ball will reach the person on the roof. standing on a roof 30 feet above the ground. Use the discriminant to determine

Lesson 10-8

69. Use a graphing calculator to determine what kind of function best models the data. Let t = 0 correspond to the year 2000. Write an equation that models the data.

225	2000	Bird (
207	2001	opulat
185	2002	S ====================================
168	2003	ie Town
160	2004	Park