Algebra 2 – Things to Remember!

Exponents: $x^0 = 1$

$$x^{-m} = \frac{1}{x^m}$$
$$(x^n)^m = x^{n \cdot m}$$

$$x^{m} \cdot x^{n} = x^{m+n} \qquad (x^{n})^{m} = x^{n}$$

$$\frac{x^{m}}{x^{m}} = x^{m-n} \qquad \left(\frac{x}{x}\right)^{n} = \frac{x}{x^{m}}$$

$$\left(\frac{x}{y}\right)^n = \frac{x^n}{y^n}$$

Complex Numbers:

Logarithms

 $y = \log_b x \Leftrightarrow x = b^y$

CH8

 $\ln x = \log_a x$ natural log e = 2.71828...

 $\log x = \log_{10} x$ common \log Change of base formula:

$$\log_b a = \frac{\log a}{\log b}$$

Properties of Logs:

 $\log_b b = 1$ $\log_b 1 = 0$

 $\log_b(m \cdot n) = \log_b m + \log_b n$

$$\log_b \left(\frac{m}{n}\right) = \log_b m - \log_b n$$

$$\log_b(m^r) = r \log_b m$$

Domain: $\log_b x$ is $x > 0$

Factoring:

Look to see if there is a GCF (greatest common factor) first. ab + ac = a(b + c)

$$x^2 - a^2 = (x - a)(x + a)$$

$$(x+a)^2 = x^2 + 2ax + a^2$$

$$(x-a)^2 = x^2 - 2ax + a^2$$

Factor by Grouping:

$$x^3 + 2x^2 - 3x - 6$$
 $(x^3 + 2x^2) - (3x + 6)$ group

$$(x^3 + 2x^2) - (3x + 6)$$
 group

$$x^2(x+2)-3(x+2)$$
 factor each

$$(x^2-3)(x+2)$$
 factor

Exponentials $e^x = \exp(x)$

 $b^x = b^y \rightarrow x = y \ (b > 0 \text{ and } b \neq 1)$

If the bases are the same, set the exponents equal and solve.

Solving exponential equations:

- Isolate exponential expression.
- Take log or ln of both sides.
- Solve for the variable.

ln(x) and e^x are inverse functions

$$\ln e^x = x \qquad e^{\ln x} = x$$

$$e^{\ln x} = x$$

$$\ln e = 1$$

$$e^{\ln 4} = 4$$

$$e^{2\ln 3} = e^{\ln 3^2} = 9$$

CH 7

Radicals: Remember to use fractional exponents.

$$\sqrt[a]{x} = x^{\frac{1}{a}}$$

$$x^{\frac{m}{n}} = \sqrt[n]{x^m} = \left(\sqrt[n]{x}\right)^m$$

$$\sqrt[n]{a^n} = a$$

$$\sqrt[n]{a^n} = a$$
 $\sqrt[n]{ab} = \sqrt[n]{a} \cdot \sqrt[n]{b}$ $\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$

$$\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$$

Simplify: look for perfect powers.

$$\sqrt{x^{12}y^{17}} = \sqrt{x^{12}y^{16}y} = x^6y^8\sqrt{y}$$

$$\sqrt[3]{72x^9y^8z^3} = \sqrt[3]{8 \cdot 9x^9y^6y^2z^3} = 2x^3y^2z\sqrt[3]{9y^2}$$

Use conjugates to rationalize denominators:

$$\frac{5}{2+\sqrt{3}} \cdot \frac{2-\sqrt{3}}{2-\sqrt{3}} = \frac{10-5\sqrt{3}}{4-2\sqrt{3}+2\sqrt{3}-\sqrt{9}} = 10-5\sqrt{3}$$

Equations: isolate the radical; square both sides to eliminate radical; combine; solve.

$$2x - 5\sqrt{x} - 3 = 0$$

$$2x-5\sqrt{x}-3=0 \rightarrow (2x-3)^2=(5\sqrt{x})^2$$

$$4x^2 - 12x + 9 = 25x \rightarrow solve: x = 9; x = 1/4$$

CHECK ANSWERS. Answer only x = 9.

Working with Rationals (Fractions): Simplify:

remember to look for a factoring of -1:

$$\frac{3x-1}{1-3x} = \frac{-1(-3x+1)}{1-3x} = -1$$

Add: Get the common denominator.

Factor first if possible:

Multiply and Divide: Factor First

Solving Rational Equations:

Get rid of the denominators by mult, all terms by common denominator.

$$\frac{22}{2x^2 - 9x - 5} - \frac{3}{2x + 1} = \frac{2}{x - 5}$$

multiply all by $2x^2 - 9x - 5$ and get

$$22-3(x-5)=2(2x+1)$$

$$22-3x+15=4x+2$$

$$37 - 3x = 4x + 2$$

$$35 = 7x$$

$$5 = x$$

Great! But the only problem is that x = 5 does not CHECK!!!! There is no solution. Extraneous root.

Motto: Always CHECK ANSWERS.

Trigonometry – Things to Remember!

Arc Length of a Circle = θr (in radians)

30°-60°-90° triangle side opposite 30° = 1/2 hypotenuse side opposite $60^{\circ} = \frac{1}{2}$ hypotenuse $\sqrt{3}$

45°-45°-90° triangle hypotenuse = $leg \sqrt{2}$ $leg = \frac{1}{2}$ hypotenuse $\sqrt{2}$

Law of Sines: uses 2 sides and 2 angles $\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$ Has an ambiguous case.

Law of Cosines: uses 3 sides and 1 angle $c^2 = a^2 + b^2 - 2ab\cos C$

Area of triangle: $A = \frac{1}{2} ab \sin C$

Radians and Degrees

Change to radians multiply by $\frac{\pi}{180}$

Change to degrees multiply by $\frac{180}{\pi}$

$$\sin \theta = \frac{o}{h}; \cos \theta = \frac{a}{h}; \tan \theta = \frac{o}{a}$$

 $\csc \theta = \frac{h}{o}; \sec \theta = \frac{h}{a}; \cot \theta = \frac{a}{o}$

Reciprocal Functions

$$\sin \theta = \frac{1}{\csc \theta}; \cos \theta = \frac{1}{\sec \theta}; \tan \theta = \frac{1}{\cot \theta}$$

 $\csc \theta = \frac{1}{\sin \theta}; \sec \theta = \frac{1}{\cos \theta}; \cot \theta = \frac{1}{\tan \theta}$

$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$
 $\cot \theta = \frac{\cos \theta}{\sin \theta}$

Trig Graphs

sinusoidal curve = any curve expressed as $y = A \sin(B(x - C)) + D$

 $amplitude(A) = \frac{1}{2} | max - min|$ (think height) period = horizontal length of 1 complete cycle frequency (B) = number of cycles in 2π (period) horizontal shift (C) - movement left/right vertical shift (D) - movement up/down

Reference triangles

are drawn to the x-axis.

Theoretical Probability

$$P(E) = \frac{n(E)}{n(S)} = \frac{\text{# of outcomes in } E}{\text{total # of outcomes in } S}$$

$$P(A \text{ and } B) = P(A) \cdot P(B)$$

for independent events
 $P(A \text{ and } B) = P(A) \cdot P(B|A)$
for dependent events

$$P(A') = 1 - P(A)$$

$$P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$$

for not mutually exclusive

$$P(A \text{ or } B) = P(A) + P(B)$$

for mutually exclusive

Z-Score - the number of standard deviations a value is from the mean.

KeyConcept Characteristics of the Standard Normal Distribution

- The total area under the curve is equal to 1 or 100%.
- Almost all of the area is between z = -3 and z = 3.
- The distribution is symmetric.
- The mean is 0, and the standard deviation is 1.
- · Centered on the y-axis

So, about 68% of data falls 1 standard deviation from the mean 95% of data falls 2 standard deviations from the mean

z-scores of -2 and 2 are 2 SD from the mean

How to make a box and whiskers plot

- 1. Order the data.
- 2. Find the median (Q2).

If odd # of values - median is the middle number If even # of values - median is average of 2 mid values

3. Find the median of the lower half of data -

the lower quartile or Q1.

- → If even # of values, use all of the numbers in the lower half.
- 4. Find the median of the upper half of the data -

- the upper quartile or Q3.

 → If even # of values, use all of the numbers in the upper half.
- 5. Draw a box and whiskers representation of the data.